Uniquely 3-colourable Steiner triple systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniquely circular colourable and uniquely fractional colourable graphs of large girth

Given any rational numbers r ≥ r′ > 2 and an integer g, we prove that there is a graph G of girth at least g, which is uniquely circular r-colourable and uniquely fractional r′-colourable. Moreover, the graph G has maximum degree bounded by a number which depends on r and r′ but does not depend on g.

متن کامل

A Note on Uniquely H-colourable Graphs

For a graph H, we compare two notions of uniquely H-colourable graphs, where one is defined via automorphisms, the second by vertex partitions. We prove that the two notions of uniquely H-colourable are not identical for all H, and we give a condition for when they are identical. The condition is related to the first homomorphism theorem from algebra.

متن کامل

Bicoloring Steiner Triple Systems

A Steiner triple system has a bicoloring with m color classes if the points are partitioned into m subsets and the three points in every block are contained in exactly two of the color classes. In this paper we give necessary conditions for the existence of a bicoloring with 3 color classes and give a multiplication theorem for Steiner triple systems with 3 color classes. We also examine bicolo...

متن کامل

Balanced Steiner Triple Systems

A Steiner triple system of order v (briefly STS(v)) is a pair (X, B), where X is a v-element set and B is a collection of 3-subsets of X (triples), such that every pair of X is contained in exactly one triple of B. It is well known that a necessary and sufficient condition for a STS(v) to exist is that v#1 or 3 (mod 6). An r-coloring of a STS(v) is a map , : X [1, ..., r] such that at least two...

متن کامل

Uniquely D-colourable Digraphs with Large Girth

Let C and D be digraphs. A mapping f : V (D) → V (C) is a Ccolouring if for every arc uv of D, either f(u)f(v) is an arc of C or f(u) = f(v), and the preimage of every vertex of C induces an acyclic subdigraph in D. We say that D is C-colourable if it admits a C-colouring and that D is uniquely Ccolourable if it is surjectively C-colourable and any two C-colourings of D differ by an automorphis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2003

ISSN: 0097-3165

DOI: 10.1016/s0097-3165(02)00016-x